Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Mol Neurodegener ; 19(1): 32, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581053

RESUMO

BACKGROUND: Ageing is the principal risk factor for retinal degenerative diseases, which are the commonest cause of blindness in the developed countries. These conditions include age-related macular degeneration or diabetic retinopathy. Regulatory T cells play a vital role in immunoregulation of the nervous system by limiting inflammation and tissue damage in health and disease. Because the retina was long-considered an immunoprivileged site, the precise contribution of regulatory T cells in retinal homeostasis and in age-related retinal diseases remains unknown. METHODS: Regulatory T cells were selectively depleted in both young (2-4 months) and aged (18-23 months) FoxP3-DTR mice. We evaluated neuroretinal degeneration, gliosis, subretinal space phagocyte infiltration, and retinal pigmented epithelium morphology through immunofluorescence analysis. Subsequently, aged Treg depleted animals underwent adoptive transfer of both young and aged regulatory T cells from wild-type mice, and the resulting impact on neurodegeneration was assessed. Statistical analyses employed included the U-Mann Whitney test, and for comparisons involving more than two groups, 1-way ANOVA analysis followed by Bonferroni's post hoc test. RESULTS: Our study shows that regulatory T cell elimination leads to retinal pigment epithelium cell dysmorphology and accumulation of phagocytes in the subretinal space of young and aged mice. However, only aged mice experience retinal neurodegeneration and gliosis. Surprisingly, adoptive transfer of young but not aged regulatory T cells reverse these changes. CONCLUSION: Our findings demonstrate an essential role for regulatory T cells in maintaining age retinal homeostasis and preventing age-related neurodegeneration. This previously undescribed role of regulatory T cells in limiting retinal inflammation, RPE/choroid epithelium damage and subsequently photoreceptor loss with age, opens novel avenues to explore regulatory T cell neuroprotective and anti-inflammatory properties as potential therapeutic approaches for age-related retinal diseases.


Assuntos
Degeneração Macular , Linfócitos T Reguladores , Camundongos , Animais , Gliose , Retina , Inflamação
2.
Heliyon ; 10(2): e24184, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304848

RESUMO

Background: With the spread of SARS-CoV-2 impacting upon public health directly and socioeconomically, further information was required to inform policy decisions designed to limit virus spread during the pandemic. This study sought to contribute to serosurveillance work within Northern Ireland to track SARS-CoV-2 progression and guide health strategy. Methods: Sera/plasma samples from clinical biochemistry laboratories were analysed for anti-SARS-CoV-2 antibodies. Samples were assessed using an Elecsys anti-SARS-CoV-2 or anti-SARS-CoV-2 S ECLIA (Roche) on an automated cobas e 801 analyser. Samples were also assessed via an anti-SARS-CoV-2 ELISA (Euroimmun). A subset of samples assessed via the Elecsys anti-SARS-CoV-2 ECLIA were subsequently analysed in an ACE2 pseudoneutralisation assay using a V-PLEX SARS-CoV-2 Panel 7 for IgG and ACE2 (Meso Scale Diagnostics). Results: Across three testing rounds (June-July 2020, November-December 2020 and June-July 2021 (rounds 1-3 respectively)), 4844 residual sera/plasma specimens were assayed for anti-SARS-CoV-2 antibodies. Seropositivity rates increased across the study, peaking at 11.6 % (95 % CI 10.4 %-13.0 %) during round 3. Varying trends in SARS-CoV-2 seropositivity were noted based on demographic factors. For instance, highest rates of seropositivity shifted from older to younger demographics across the study period. In round 3, Alpha (B.1.1.7) variant neutralising antibodies were most frequently detected across age groups, with median concentration of anti-spike protein antibodies elevated in 50-69 year olds and anti-S1 RBD antibodies elevated in 70+ year olds, relative to other age groups. Conclusions: With seropositivity rates of <15 % across the assessment period, it can be concluded that the significant proportion of the Northern Ireland population had not yet naturally contracted the virus by mid-2021.

3.
Vision Res ; 214: 108339, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039846

RESUMO

Retinal function changes dramatically from day to night, yet clinical diagnosis, treatments, and experimental sampling occur during the day. To begin to address this gap in our understanding of disease pathobiology, this study investigates whether diabetes affects the retina's daily rhythm of gene expression. Diabetic, Ins2Akita/J mice, and non-diabetic littermates were kept under a 12 h:12 h light/dark cycle until 4 months of age. mRNA sequencing was conducted in retinas collected every 4 h throughout the 24 hr light/dark cycle. Computational approaches were used to detect rhythmicity, predict acrophase, identify differential rhythmic patterns, analyze phase set enrichment, and predict upstream regulators. The retinal transcriptome exhibited a tightly regulated rhythmic expression with a clear 12-hr transcriptional axis. Day-peaking genes were enriched for DNA repair, RNA splicing, and ribosomal protein synthesis, night-peaking genes for metabolic processes and growth factor signaling. Although the 12-hr transcriptional axis is retained in the diabetic retina, it is phase advanced for some genes. Upstream regulator analysis for the phase-shifted genes identified oxygen-sensing mechanisms and HIF1alpha, but not the circadian clock, which remained in phase with the light/dark cycle. We propose a model in which, early in diabetes, the retina is subjected to an internal desynchrony with the circadian clock and its outputs are still light-entrained whereas metabolic pathways related to neuronal dysfunction and hypoxia are phase advanced. Further studies are now required to evaluate the chronic implications of such desynchronization on the development of diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Ritmo Circadiano/genética , Transcriptoma , Retina/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Fotoperíodo
4.
Dis Model Mech ; 16(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671525

RESUMO

Diabetic retinopathy (DR) is characterised by dysfunction of the retinal neurovascular unit, leading to visual impairment and blindness. Müller cells are key components of the retinal neurovascular unit and diabetes has a detrimental impact on these glial cells, triggering progressive neurovascular pathology of DR. Amongst many factors expressed by Müller cells, interleukin-33 (IL-33) has an established immunomodulatory role, and we investigated the role of endogenous IL-33 in DR. The expression of IL-33 in Müller cells increased during diabetes. Wild-type and Il33-/- mice developed equivalent levels of hyperglycaemia and weight loss following streptozotocin-induced diabetes. Electroretinogram a- and b-wave amplitudes, neuroretina thickness, and the numbers of cone photoreceptors and ganglion cells were significantly reduced in Il33-/- diabetic mice compared with those in wild-type counterparts. The Il33-/- diabetic retina also exhibited microglial activation, sustained gliosis, and upregulation of pro-inflammatory cytokines and neurotrophins. Primary Müller cells from Il33-/- mice expressed significantly lower levels of neurotransmitter-related genes (Glul and Slc1a3) and neurotrophin genes (Cntf, Lif, Igf1 and Ngf) under high-glucose conditions. Our results suggest that deletion of IL-33 promotes inflammation and neurodegeneration in DR, and that this cytokine is critical for regulation of glutamate metabolism, neurotransmitter recycling and neurotrophin secretion by Müller cells.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Interleucina-33 , Animais , Camundongos , Citocinas , Células Ependimogliais , Inflamação , Retina
5.
Nat Commun ; 14(1): 5552, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689702

RESUMO

The microvasculature plays a key role in tissue perfusion and exchange of gases and metabolites. In this study we use human blood vessel organoids (BVOs) as a model of the microvasculature. BVOs fully recapitulate key features of the human microvasculature, including the reliance of mature endothelial cells on glycolytic metabolism, as concluded from metabolic flux assays and mass spectrometry-based metabolomics using stable tracing of 13C-glucose. Pharmacological targeting of PFKFB3, an activator of glycolysis, using two chemical inhibitors results in rapid BVO restructuring, vessel regression with reduced pericyte coverage. PFKFB3 mutant BVOs also display similar structural remodelling. Proteomic analysis of the BVO secretome reveal remodelling of the extracellular matrix and differential expression of paracrine mediators such as CTGF. Treatment with recombinant CTGF recovers microvessel structure. In this work we demonstrate that BVOs rapidly undergo restructuring in response to metabolic changes and identify CTGF as a critical paracrine regulator of microvascular integrity.


Assuntos
Células Endoteliais , Proteômica , Humanos , Bioensaio , Microvasos , Organoides , Monoéster Fosfórico Hidrolases
6.
Antioxidants (Basel) ; 12(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37508004

RESUMO

Diabetic retinopathy (DR) is a complication of diabetes mellitus that can lead to vision loss and blindness. It is driven by various biochemical processes and molecular mechanisms, including lipid peroxidation and disrupted aldehyde metabolism, which contributes to retinal tissue damage and the progression of the disease. The elimination and processing of aldehydes in the retina rely on the crucial role played by aldehyde dehydrogenase (ALDH) and aldo-keto reductase (AKR) enzymes. This review article investigates the impact of oxidative stress, lipid-derived aldehydes, and advanced lipoxidation end products (ALEs) on the advancement of DR. It also provides an overview of the ALDH and AKR enzymes expressed in the retina, emphasizing their growing importance in DR. Understanding the relationship between aldehyde metabolism and DR could guide innovative therapeutic strategies to protect the retina and preserve vision in diabetic patients. This review, therefore, also explores various approaches, such as gene therapy and pharmacological compounds that have the potential to augment the expression and activity of ALDH and AKR enzymes, underscoring their potential as effective treatment options for DR.

7.
Diabetologia ; 66(8): 1557-1575, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351595

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is associated with increased risk of cognitive decline although the pathogenic basis for this remains obscure. Deciphering diabetes-linked molecular mechanisms in cells of the cerebral cortex could uncover novel therapeutic targets. METHODS: Single-cell transcriptomic sequencing (scRNA-seq) was conducted on the cerebral cortex in a mouse model of type 2 diabetes (db/db mice) and in non-diabetic control mice in order to identify gene expression changes in distinct cell subpopulations and alterations in cell type composition. Immunohistochemistry and metabolic assessment were used to validate the findings from scRNA-seq and to investigate whether these cell-specific dysfunctions impact the neurovascular unit (NVU). Furthermore, the behavioural and cognitive alterations related to these dysfunctions in db/db mice were assessed via Morris water maze and novel object discrimination tests. Finally, results were validated in post-mortem sections and protein isolates from individuals with type 2 diabetes. RESULTS: Compared with non-diabetic control mice, the db/db mice demonstrated disrupted brain function as revealed by losses in episodic and spatial memory and this occurred concomitantly with dysfunctional NVU, neuronal circuitry and cerebral atrophy. scRNA-seq of db/db mouse cerebral cortex revealed cell population changes in neurons, glia and microglia linked to functional regulatory disruption including neuronal maturation and altered metabolism. These changes were validated through immunohistochemistry and protein expression analysis not just in the db/db mouse cerebral cortex but also in post-mortem sections and protein isolates from individuals with type 2 diabetes (74.3 ± 5.5 years) compared with non-diabetic control individuals (87.0 ± 8.5 years). Furthermore, metabolic and synaptic gene disruptions were evident in cortical NVU cell populations and associated with a decrease in vascular density. CONCLUSIONS/INTERPRETATION: Taken together, our data reveal disruption in the cellular and molecular architecture of the cerebral cortex induced by diabetes, which can explain, at least in part, the basis for progressive cognitive decline in individuals with type 2 diabetes. DATA AVAILABILITY: The single-cell sequencing data that supports this study are available at GEO accession GSE217665 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217665 ).


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Disfunção Cognitiva/tratamento farmacológico , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
8.
Fluids Barriers CNS ; 19(1): 88, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345028

RESUMO

BACKGROUND: While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-ß (Aß) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aß. METHODS: To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aß deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS: We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aß. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS: Our data support the cross-talk between metabolic disease and Aß deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Animais , Camundongos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estado Pré-Diabético/complicações , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Angiopatia Amiloide Cerebral/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/complicações , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Encéfalo/metabolismo , Metaloproteinases da Matriz
9.
Diabetes ; 71(12): 2685-2701, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36203331

RESUMO

Intraretinal hyperreflective foci (HRF) are significant biomarkers for diabetic macular edema. However, HRF at the vitreoretinal interface (VRI) have not been examined in diabetic retinopathy (DR). A prospective observational clinical study with 162 consecutive eyes using OCT imaging showed significantly increased HRF at the VRI during DR progression (P < 0.01), which was reversed by anti-vascular endothelial growth factor (VEGF) therapy. F4/80+ macrophages increased significantly at the VRI in Kimba (vegfa+/+) or Akimba (Akita × Kimba) mice (both P < 0.01), but not in diabetic Akita (Ins2+/-) mice, indicating macrophage activation was modulated by elevated VEGF rather than the diabetic milieu. Macrophage depletion significantly reduced HRF at the VRI (P < 0.01). Furthermore, BrdU administration in Ccr2rfp/+Cx3cr1gfp/+vegfa+/- mice identified a significant contribution of M2-like tissue-resident macrophages (TRMs) at the VRI. Ki-67+ and CD11b+ cells were observed in preretinal tissues of DR patients, while exposure of vitreal macrophages to vitreous derived from PDR patients induced a significant proliferation response in vitro (P < 0.01). Taken together, the evidence suggests that VEGF drives a local proliferation of vitreous resident macrophages (VRMs) at the VRI during DR. This phenomenon helps to explain the derivation and disease-relevance of the HRF lesions observed through OCT imaging in patients.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Camundongos , Animais , Retinopatia Diabética/metabolismo , Fator A de Crescimento do Endotélio Vascular , Macrófagos/metabolismo , Estudos Prospectivos , Tomografia de Coerência Óptica , Diabetes Mellitus/patologia , Receptor 1 de Quimiocina CX3C/genética
10.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134661

RESUMO

Loss of retinal blood flow autoregulation is an early feature of diabetes that precedes the development of clinically recognizable diabetic retinopathy (DR). Retinal blood flow autoregulation is mediated by the myogenic response of the retinal arterial vessels, a process that is initiated by the stretch­dependent activation of TRPV2 channels on the retinal vascular smooth muscle cells (VSMCs). Here, we show that the impaired myogenic reaction of retinal arterioles from diabetic animals is associated with a complete loss of stretch­dependent TRPV2 current activity on the retinal VSMCs. This effect could be attributed, in part, to TRPV2 channel downregulation, a phenomenon that was also evident in human retinal VSMCs from diabetic donors. We also demonstrate that TRPV2 heterozygous rats, a nondiabetic model of impaired myogenic reactivity and blood flow autoregulation in the retina, develop a range of microvascular, glial, and neuronal lesions resembling those observed in DR, including neovascular complexes. No overt kidney pathology was observed in these animals. Our data suggest that TRPV2 dysfunction underlies the loss of retinal blood flow autoregulation in diabetes and provide strong support for the hypothesis that autoregulatory deficits are involved in the pathogenesis of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Artéria Retiniana , Animais , Arteríolas , Homeostase/fisiologia , Humanos , Ratos , Vasos Retinianos , Canais de Cátion TRPV/genética
11.
Front Physiol ; 13: 929118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091370

RESUMO

Purpose: Features of cellular senescence have been described in diabetic retinal vasculature. The aim of this study was to investigate how the high glucose microenvironment impacts on the senescence program of retinal endothelial cells. Methods: Human retinal microvascular endothelial cells were cultured under control and high glucose conditions of 5 mM and 25 mM D-glucose, respectively. Isomeric l-glucose was used as the osmotic control. Cells were counted using CASY technology until they reached their Hayflick limit. Senescence-associated ß-Galactosidase was used to identify senescent cells. Endothelial cell functionality was evaluated by the clonogenic, 3D tube formation, and barrier formation assays. Cell metabolism was characterized using the Seahorse Bioanalyzer. Gene expression analysis was performed by bulk RNA sequencing. Retinal tissues from db/db and db/+ mice were evaluated for the presence of senescent cells. Publicly available scRNA-sequencing data for retinas from Akimba and control mice was used for gene set enrichment analysis. Results: Long term exposure to 25 mM D-Glucose accelerated the establishment of cellular senescence in human retinal endothelial cells when compared to 5 mM D-glucose and osmotic controls. This was shown from 4 weeks, by a significant slower growth, higher percentages of cells positive for senescence-associated ß-galactosidase, an increase in cell size, and lower expression of pRb and HMGB2. These senescence features were associated with decreased clonogenic capacity, diminished tubulogenicity, and impaired barrier function. Long term high glucose-cultured cells exhibited diminished glycolysis, with lower protein expression of GLUT1, GLUT3, and PFKFB3. Transcriptomic analysis, after 4 weeks of culture, identified downregulation of ALDOC, PFKL, and TPI1, in cells cultured with 25 mM D-glucose when compared to controls. The retina from db/db mice showed a significant increase in acellular capillaries associated with a significant decrease in vascular density in the intermediate and deep retinal plexuses, when compared to db/+ mice. Senescent endothelial cells within the db/db retinal vasculature were identified by senescence-associated ß-galactosidase staining. Analysis of single cell transcriptomics data for the Akimba mouse retina highlighted an enrichment of senescence and senescence-associated secretory phenotype gene signatures when compared to control mice. Conclusion: A diabetic-like microenvironment of 25 mM D-glucose was sufficient to accelerate the establishment of cellular senescence in human retinal microvascular endothelial cells.

12.
Stem Cell Res Ther ; 13(1): 388, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907890

RESUMO

BACKGROUND: Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY: Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION: Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Diabetes Mellitus/patologia , Retinopatia Diabética/etiologia , Células Endoteliais/patologia , Humanos , Retina/patologia , Células-Tronco/patologia
13.
Biomedicines ; 10(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35203520

RESUMO

N-methyl-N-nitrosourea (NMU) is widely used to model oxidative stress and inflammation mediated retinal neurodegeneration. Wedelolactone (WD) is known to have antioxidant, anti-inflammatory, and neuroprotective roles. This study tested the therapeutic potential of WD in NMU-induced retinal neurodegeneration and investigated the underlying mechanisms in mice. NMU (40 mg/kg) was injected intraperitoneally into C57BL/6J mice with/without an intravitreal injection of WD (1 µL/eye, 200 µM). Seven days later, retinal function and structure were evaluated by electroretinography (ERG) and Spectral Domain Optical Coherence Tomography (SD-OCT). The expression of inflammasome components (Aim2, Caspase 1/11, and Il1b/Il18) in the total retina lysate was evaluated by RT-qPCR. In vitro, 661W photoreceptor cells were transfected with synthetic double-strand DNA (Poly(dA:dT)) with/without WD pre-incubation. The aim2-related inflammasome expression was evaluated by RT-qPCR and immunocytochemistry. The production of IL18 was measured by ELISA. NMU treatment significantly impaired A- and B-wave response (ERG) and reduced neuroretina thickness (OCT). This was significantly attenuated upon intravitreal injection of WD. The expression of Aim2, ACasp1, and Casp11 was increased in the retina from NMU-treated mice, and this was prevented by WD treatment. Transfection of Poly(dA:dT) upregulated Aim2, Casp11, and Il18 expression in 661W cells. WD prevented their upregulation and reduced IL18 production. Aim2 inflammasome activation is critically involved in NMU-induced retinal neurodegeneration and WD can protect the retina particularly through the suppression of this inflammasome-linked pathway.

14.
Trends Endocrinol Metab ; 33(1): 50-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794851

RESUMO

Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/etiologia , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos
15.
Stem Cells Transl Med ; 10 Suppl 2: S54-S61, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34724714

RESUMO

Ischemic vascular disease is a major cause of mortality and morbidity worldwide, and regeneration of blood vessels in perfusion-deficient tissues is a worthwhile therapeutic goal. The idea of delivering endothelial stem/progenitor cells to repair damaged vasculature, reperfuse hypoxic tissue, prevent cell death, and consequently diminish tissue inflammation and fibrosis has a strong scientific basis and clinical value. Various labs have proposed endothelial stem/progenitor cell candidates. This has created confusion, as there are profound differences between these cell definitions based on isolation methodology, characterization, and reparative biology. Here, a stricter definition based on stem cell biology principles is proposed. Although preclinical studies have often been promising, results from clinical trials have been highly contradictory and served to highlight multiple challenges associated with disappointing therapeutic benefit. This article reviews recent accomplishments in the field and discusses current difficulties when developing endothelial stem cell therapies. Emerging evidence that disputes the classic view of the bone marrow as the source for these cells and supports the vascular wall as the niche for these tissue-resident endothelial stem cells is considered. In addition, novel markers to identify endothelial stem cells, including CD157, EPCR, and CD31low VEGFR2low IL33+ Sox9+ , are described.


Assuntos
Células Progenitoras Endoteliais , Biomarcadores/metabolismo , Células Progenitoras Endoteliais/metabolismo , Humanos , Isquemia/terapia , Neovascularização Fisiológica , Células-Tronco
16.
Invest Ophthalmol Vis Sci ; 62(13): 18, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677569

RESUMO

Purpose: To investigate the effect of plasma kallikrein (PKal)-inhibition by THR-149 on preventing key pathologies associated with diabetic macular edema (DME) in a rat model. Methods: Following streptozotocin-induced diabetes, THR-149 or its vehicle was administered in the rat via either a single intravitreal injection or three consecutive intravitreal injections (with a 1-week interval; both, 12.5 µg/eye). At 4 weeks post-diabetes, the effect of all groups was compared by histological analysis of Iba1-positive retinal inflammatory cells, inflammatory cytokines, vimentin-positive Müller cells, inwardly rectifying potassium and water homeostasis-related channels (Kir4.1 and AQP4, respectively), vascular leakage (fluorescein isothiocyanate-labeled bovine serum albumin), and retinal thickness. Results: Single or repeated THR-149 injections resulted in reduced inflammation, as depicted by decreasing numbers and activation state of immune cells and IL-6 cytokine levels in the diabetic retina. The processes of reactive gliosis, vessel leakage, and retinal thickening were only significantly reduced after multiple THR-149 administrations. Individual retinal layer analysis showed that repeated THR-149 injections significantly decreased diabetes-induced thickening of the inner plexiform, inner nuclear, outer nuclear, and photoreceptor layers. At the glial-vascular interface, reduced Kir4.1-channel levels in the diabetic retina were restored to control non-diabetic levels in the presence of THR-149. In contrast, little or no effect of THR-149 was observed on the AQP4-channel levels. Conclusions: These data demonstrate that repeated THR-149 administration reduces several DME-related key pathologies such as retinal thickening and neuropil disruption in the diabetic rat. These observations indicate that modulation of the PKal pathway using THR-149 has clinical potential to treat patients with DME.


Assuntos
Anticoagulantes/administração & dosagem , Retinopatia Diabética/sangue , Calicreína Plasmática/antagonistas & inibidores , Retina/patologia , Tomografia de Coerência Óptica/métodos , Animais , Biomarcadores/sangue , Diabetes Mellitus Experimental , Retinopatia Diabética/patologia , Injeções Intravítreas , Masculino , Calicreína Plasmática/metabolismo , Ratos , Ratos Endogâmicos BN , Retina/metabolismo
17.
J Pharmacokinet Pharmacodyn ; 48(6): 825-836, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34302260

RESUMO

Intravitreal (IVT) injection of pharmacological agents is an established and widely used procedure for the treatment of many posterior segment of the eye diseases. IVT injections permit drugs to reach high concentrations in the retina whilst limiting systemic exposure. Beyond the risk of secondary complications such as intraocular infection, the potential of systemic adverse events cannot be neglected. Therefore, a detailed understanding of the rules governing systemic exposure following IVT drug administration remains a prerequisite for the evaluation and development of new pharmacological agents intended for eye delivery. We present here a novel mathematical model to describe and predict circulating drug levels following IVT in the rabbit eye, a species which is widely used for drug delivery, pharmacokinetic, and pharmacodynamic studies. The mathematical expression was derived from a pharmacokinetic model that assumes the existence of a compartment between the vitreous humor compartment itself and the systemic compartment. We show that the model accurately describes circulating levels of THR-149, a plasma kallikrein inhibitor in development for the treatment of diabetic macular edema. We hypothesize that the model based on the rabbit eye has broader relevance to the human eye and can be used to analyze systemic exposure of a variety of drugs delivered in the eye.


Assuntos
Retinopatia Diabética , Edema Macular , Animais , Retinopatia Diabética/tratamento farmacológico , Edema Macular/tratamento farmacológico , Edema Macular/metabolismo , Preparações Farmacêuticas/metabolismo , Coelhos , Retina/metabolismo , Corpo Vítreo/metabolismo
18.
J Pharmacokinet Pharmacodyn ; 48(6): 837-849, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34302261

RESUMO

Intravitreal (IVT) injection remains the preferred administration route of pharmacological agents intended for the treatment of back of the eye diseases such as diabetic macular edema (DME) and neovascular age-related macular degeneration (nvAMD). The procedure enables drugs to be delivered locally at high concentrations whilst limiting whole body exposure and associated risk of systemic adverse events. Nevertheless, intravitreally-delivered drugs do enter the general circulation and achieving an accurate understanding of systemic exposure is pivotal for the evaluation and development of drugs administered in the eye. We report here the full pharmacokinetic properties of THR-687, a pan RGD integrin antagonist currently in clinical development for the treatment of DME, in both rabbit and minipig. Pharmacokinetic characterization included description of vitreal elimination, of systemic pharmacokinetics, and of systemic exposure following IVT administration. For the latter, we present a novel pharmacokinetic model that assumes clear partition between the vitreous humor compartment itself where the drug is administered and the central systemic compartment. We also propose an analytical solution to the system of differential equations that represent the pharmacokinetic model, thereby allowing data analysis with standard nonlinear regression analysis. The model accurately describes circulating levels of THR-687 following IVT administration in relevant animal models, and we suggest that this approach is relevant to a range of drugs and analysis of subsequent systemic exposure.


Assuntos
Retinopatia Diabética , Edema Macular , Animais , Retinopatia Diabética/tratamento farmacológico , Injeções Intravítreas , Edema Macular/tratamento farmacológico , Coelhos , Suínos , Porco Miniatura , Corpo Vítreo
19.
Eur Biophys J ; 50(7): 1037-1043, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34159406

RESUMO

Selection of pharmacological agents based on potency measurements performed at equilibrium fail to incorporate the kinetic aspects of the drug-target interaction. Here we describe a method for screening or characterization of enzyme inhibitors that allows the concomitant determination of the equilibrium inhibition constant in unison with rates of complex formation and dissociation. The assay is distinct from conventional enzymatic assays and is based on the analysis of inhibition curves recorded prior to full equilibration of the system. The methodology is illustrated using bicyclic peptide inhibitors of the serine protease plasma kallikrein.


Assuntos
Inibidores Enzimáticos , Serina Endopeptidases , Inibidores Enzimáticos/farmacologia , Cinética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...